The energy it stores (?180 Wh kg?1) at an average voltage of 3.8 V is only a factor of 5 higher than that stored by the much older lead -- acid batteries. This may seem poor in the light of Moore's law in electronics (according to which memory capacity doubles every 18 months), but it still took a revolution in materials science to achieve it. Billions of lithium-ion cells are produced for portable electronics, but this is not sustainable as cobalt must be obtained from natural resources (it makes up 20 parts per million of Earth's crust). (Armand & Tarascon, 2008, p. 653).
Fu investigated the lithium-ion conductivities of glasses and glass-ceramics in the LI2O-AlO3-TiO2P2O5 system. Fu's samples revealed high conductivity, albeit when Abrahams and Hadzifejzovic similarly investigated the LI2O-AlO3-TiO2P2O5 glass and glass-ceramic systems, their findings revealed "a maximum room temperature conductivity of 3.98 x 10-6 S/cm in their crystallized...
[ View Full Essay]